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ABSTRACT
~—*— A system of two elliptic p.d.e.'s, which model the conduction-convection
problea in a porous medium with change of phase is considered.
The first equation describes the heat conduction and holds in a fixed

domain. The second takes into account the convective motions and holds in the
unknown melted part of the region.

The existence of a locally regular weak solution is proved by making use

of various compactness arguments.
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SIGNIFICANCE AND EXPLANATION

Consider the problem of artificial freezing or thawing of ground water.
The problem has important engineering applications such as ground
stabilization at construction sites and the prevention of water leakage into
tunnels or shafts.

In the melted part of the ground the convective motions forced by
temperature gradients affect significantly the free boundary of separation
between the melted and solid regions.

As a mathematical model of this situation we study a system of two
elliptic equations, one describing heat conduction and the other the velocity
flow of convection. We demonstrate that the problem has a solution in a

suitable weak sense. Regularity properties of the solution are also derived.
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EXISTENCE POR A PROBLEM IN GROUND PREEZING

E. DiBenedetto ’' and C. M. Elliott?

1. INTRODUCTION

There exists laboratory and theoretical evid to suggest that convection can play

an important role in heat transfer with change of phase in a porous medium (see

(6,7,8,1]). We mention specifically the artificial freezing or thawing of groundwater in
view of the important engineering applications such as ground stabilization at construction
sites and the prevention of water leakage into tunnels or shafts (see (11, 12]). 1In
certain circumstances, the moving boundary problem considered by the above authors has a
nontrivial steady state. This leads to the study of a free boundary problem for a system
of two elliptic partial differential equations.

Let 2 be a bounded domain in lying between two closed curves 3 S and 9 Q.

The domain 2 is the union of two sets R and 9* which are respectively the frozen and
unfrozen regions with the phase change temperature being zero at the unknown free boundary
I separating the sets. Pigure 1 can be interpreted as a vertical cross-section of a
portion 2 of frozen ground, where a horizontal pipe of cross-section @ *ﬂ carries warm
oil. Then around the pipe there is an unfrozen region n’. If 9‘ and Q  are
interchanged then one could regard Figure 1 as depicting the artificial freezing of a
horizontal layer of ground by the insertion of a vertical freeze pipe. In this case the
experiments of Frivik and Comini (6] and the numerical work of Goldstein and Reid [7] and
Barrett and Elliott [1], show that the flow of groundwater can significantly affect the

extent of the frozen region

;Dcpurt-cnt of Mathematics, Indiana University, Bloomington, IN 47405
Department of Mathematics, Imperial College of Science and Technology, Huxley Building,
Queen's Gate, london SW7 2B2

*Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. Partially
supported by National Science PFoundation Grant 48-296-80 MCS 8300293,
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Figure 1

Let u,; and p denote, respectively, dimensionless temperature, velocity and
pressure. The model equations are then the steady state convection-conduction equation,
the continuity equation and Darcy's law which links the pressure to the velocity [1,7]).
The problem can be formulated as follows.

»
Find {u,v,p,I} such that

2
. 3
(1.1) du+dvVu=f + § ¢ in 9
0 i=1 ax1 i .
(1.2) 2' = (x eQlux) > 0}; & = {x & 2lulx) < 0

a=2"uruva’, w=aauaa

+
(1.3) v - ~x, (%p + glu,x)}  in @
(1.4) atvv=0 sn 8%, V=0 in @
(1.5) i )
3+ﬂ
(1.6) u=¢ on 3, ¢>0 on 3’9, $<0 on 3 Q.
2 3
Here ) > 0 is a prescribed physical constant, fo + z Ix f1 represents a known
i=1 i
digtribution of heat sources (or sinks) in %, ko is the coefficient of permeability and

; is a buoyancy force.

Remarks: (i) If £, i = 1,2 is the Heaviside function in the xy direction then on

the right hand side of (1.1) we allow sources (or sinks), like Dirac masses.
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(11) The problem haa been formulated having in mind the case when thawing occurs and .
@ 1is a vertical layer. This is then a problem in free convection where the flow is
driven by the vertical temperature gradient. In the case of artificial freeziny in a
horizontal layer the effect of a prescribed flow on the extent of the frozen region is of
interest and then (1.5) may be replaced by the prescription of a non-zero normal velocity
or pressure.
We observe that the incompressibility condition (1.4) and the Darcy law (1.3) imply
that the pressure solves the elliptic equation
(1.7) daiv kolvp + ;(u,x)l =0 in 02*.
The aim of this paper is to prove an existence theorem for (1.1)-(1.6) in a suitable
weak sense. The difficulty here is represented by the fact that (1.3) and (1.7) are r
conditions which hold on the unknown region 9’. They might be interpreted in the sense of
distributions over n’ if ﬂ’ is open. This latter information will be implied by the l
local H3lder continuity of the temperature. The main points of the proof are the
introduction of a penalized problem (in the spirit of (3,4]) and a careful use of the ;
information (1.4) and the fact that the space dimension is two, in order to prove that u ;
is HSlder continuous. We now come to a precise formulation of our results. Q
Definition. By a weak solution of (1.1)=(1.7) we mean a triple (u,;,p} such that 8
(1 wew"2mo"@mn c®@)y u=9¢ on 20 |
(1) ve 2@1? anda V=0 ae.on fuc<o0); veliy o= 0 '
(1) pew3(u > o, ‘
satisfying (the susmation notation is used)

(1.8) | (Fu = \u)nax = | £,ndx - J f£,n, ax
[ ] Q 1

wew' 3@ n @

(1. 9) J  19p + glu,x))+Vnax = 0
[u>0)

vn e u"’(m such that sup N C {u> 0] ,

L T, e




»> L 4 >
’ (1.10) ] (v~ ko(7p + glu,x)])endx = 0
[u>0)

we [l.z(ml2 such that supp nc [u>0] .
Remarks: (i) Since we require u € c“(m, the set (u > 0] 4is open in the relative
topology of 1 and hence (1.9)-(1.10) are meaningful.
(11) (1.9)-(1.10) imply that aiv v =0 4in D'([u > 0]).

The integrals in (1.8)-(1.10) are well defined, modulo basic assumptions listed below.

[Ag] 9% satisfies the cone condition (see [10])

(ay £, e @), «>0, 1=0,1,2

) ¢en'Zomn 1 Ga), ¢>0 on 3,0 ana ¢ <0 on 28

> 3 2
[A,] g: R + R is continuous and

R

bd t
lglu,x)| € clul™ + 9olx)
where C and t are given nonnegative constants with t e [0,1), and

go(x) e Lz(ﬂ) .

ST~ TN, Tven

Theorem. Let [Aol-[A3] hold. Then problem (1.1)-(1.7) has a weak solution.
Remark. Let t = 1 in [A3). The existence of a weak solution in this case follows from a
remark in section 5 provided the data is sufficiently small.

The paper is organized as follows. In section 2 a family of penalized (or smoothed) b
problems is introduced. Basic results for this family are stated in section 2 and proved
in sections 4 and 5. The theorem is demonstrated in section 3. Standard notation for

Q
.,
norm. The measure of a get A in R is denoted by |Al.

function spaces is employed throughout the paper and l-lp is used to denote the LP Q)

-4~
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2. CONSTRUCTION OF THE SOLUTION

ror € > 0 consider the Lipschitz continuwous function s + ke(') defined by

ko >0
(2.1) K (8) =k + € - cls s e [-€,0]
€ 8 € =¢

g
and the problem of finding functions LI A satisfying
1,2
u e w ’'7(2), u. = ¢ on 39

(2.2) voenlan?  aw i s0 in 0@

pe e "'z‘n) [

(2.3) [ {Vu,*%n - AV uVnlax = [ fonax - [ £n_ax, wne #iayn @,
a a a '
(2.4) [ X (u)¥p, + 3tu_,x)1-Vnax = 0, wn e w' ()
a
and
(2.5) sfz (%, - k (u ) {¥p_ + Jlu_x))fax = 0, vie w?w@n? .

This smoothing of the problem (1.1)=(1.2) has a sound physical basis. In reality it
may indeed be the case that the coefficient of permeability takes a tiny non~zero value in
the frosen region (see [6]). Hence the study of (2.1)=(2.5) is of interest in its own
right.

The proof of the theorem rests upon the following propositions

Proposition 1.

Por all € > 0, problem (2.2)-(2.5) has a solution. Moreover, ¥e > 0

<G

(2.6) tucl, o <G,

<G

(2.7) Tu_t + lV\x.:lz".z 9

€ 2,0

(2.8) l/ke(u) |vp¢||,‘!'n <G

2

s e —————c sy
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(2.9) lvt:l,‘!"l < 63

For constants G, depending upon the data in assumptions [l|l'lA31 and independent of €.

b |
Proposition 2.

FPor every compact set K C I there exists constants Y(K), a € (0,1) depending only

upon the data and independent of € such that

(2.10) fu (x) = u (y)l € Y(K)Ix = vi% wix,y) ek, wve> o0 .

Remark

If the boundary datum ¢ € c®, then the equi-H81lder continuity of the net { “e}
carries up to ﬁ. with constants Y and a depending upon the data and a.

The proof of propositions 1 and 2 are postponed to sections 4 and 5.

N
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3. PROOF OF THE THEOREM

Let us assume Propositions 1,2 for the moment and let us conclude the proof of

existence by using these facts.

Because of (2.6)-(2.10) subnets out of (;c} and {“e) can be selected (and

relabeled with €) such that

;c + v weakly in u.’mnz

u. * u weakly in H"z(ﬂ)

u *u uniformly on compact sets of Q .

Letting € + 0 in (2.3) proves (1.8). From (2.4)-(2.5) we have

v evnax=0 wnew' 3@
a €

and hence

Alv v =0 in D'(Q) .

Since (“:) are equibounded and equi-HSlder continuous in £, the uniform limit

is H5lder continucus in £, and therefore the gets [u > 0] and (u < 0] are open in the

relative topology of .

Let K be compact and contained in {u < 0). There exists o > 0 and € < 0/4

such that
ulx) < -0 , Vx.e K
ue(x)<-o/2,Vxex,Vc<e°
kc(uc)-e, Vxex,ve<eo.
By (2.5)

+ »
Ve = -ke(uc”v"c + g(ue,x)l a.e. in Q

and therefore

+» 2 2 2 2 * 2
i{z v |%ax < 2 { X (u ) IVp |"ax + 2 {ke(uc)lql ax

2 2.+ 2
< 2 clv‘kt(nc) lv’e“z,n +2c¢ 'g(“e"‘"z,a

=

u
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*
Letting € * 0 by the weak lower semicontinuity of the norm we obtain v = 0 a.e. in

K, and since K is an arbitrary compact set in [u < 0] we have
; =0 a.e. in [(u < 0} .
It remains to prove (1.9)=(1.10). Let K C [u > 0] be compact. There exist

g>0, €,>0 such that

0
u{x) >0 , Vx € K
ue(x) > a/2 , Vx € K, Ve < € *
ke(ue(x)) - ko A ¥Vx e K, ¥e < € °

By (2.8) and the definition of kt(“e)

< K .

Wp 1, x € C/7Kg

The vectors (Vpel are therefore weakly compact in [Lz(x)]2 and for a subnet, relabeled
with ex

", * EK weakly in (L2(x)12 .
K

Let (Kn} be a family of compact subsets of [u > 0] such that

KnC [u > 0], KnC Kn+1, n\;1 Kn = ,[u > 0] .

Then by a diagonal process a subnet out of {Vpc) can be selected (and relabeled with
€) such that
p, » £ weakly in (L2(fu > 01012
Next we want to identify E as the gradient of a function p e w"z([u > 0)).
LJ

Let A be an open set in RN, N> 2 and let DG(A) be the space of all Co vector

fields ¥ in A which are solenoidal (div § = 0). wWe set
3 (A) = (the (t2(a)1¥ closure of D ) .

Let also G(A) denote the space of those square integrable vector fields in

[LZ(A)]' obtained as gradients of functions in H"z(h).

-




By Weyl's lemma, [9), the orthogonal decomposition,
w?an® =3 m) e o,

holds.

We must show that E e G([u > 0]), or equivalently that
(3.1) ] Elax=0, vwe 3 (tu> o)

[u>0)

Since Do”“ > 0]) is dense in Ja([u > 0]) it will suffice to prove (3.1) for all

Ve o> on.

Now Ve >0 p e w1,2([“ > 01), therefore for all ¢ € D ([u > 0]) we have
€ g

/ vpbax= [ pawviax=o.
{u>0] {wo]

Letting € + 0 (3.1) follows. We will set
t-vp, pewiu>on.
Consider now (2.4) and (2.5) where n and r‘\ are supported on some compact set

K € [u > 0]. By an argument similar to the one above, if € is sufficiently small we must

1,2

have ke(“c) = K Letting € + 0 we recover (1.9) vnew () supp nC K, and (1.10)

0*
vh e [Lz(ﬂ)lz supp " C K. Since K C {u > 0] is arbitrary (1.9) and (1.10) follow.

-9~




4. A PRIORI ESTIMATES

It is the purpose of this section to prove the following two lemmas.

Lemma 1

Let v e [Lz(ﬂ)lz. Adiv v = 0 in D'(Q) and I;I2 g ¢V for a given positive
[

constant V. If [Aol-[Azl hold then the problem

(4a.1) | {%u - AVu}Vn ax = £,
2

nax-[fn ax  wew @ 17w
Q a ¥

i
ulag = ¢

has a unique solution u € H"z(ﬂ). Also the following a priori estimates hold:

2 2 2
(4.2) Iulz'n + IVuIzln < 10(1 + V)
(4.3) Iul.’n < 11(1 + V)

and u in HSlder continuous on compact subgsets of Q with the HSlder exponent a
and HSlder constant Y depending on [Agl-[A,] and V.

Lesma 2

Let u e L.(ﬂ) be arbitrary and € a given positive constant. If [AO;A3] hold

then the problem of finding p = plu,e) € W''2(2) such that

(4.4) [k (0)(%p + 3tu,x)]enax ~0  wnew' @)
Q

has a solution which belong to a unique class [p) e H"z(ﬂ)/l. The vector fie'd

;(u,s) = ks(u)lvp(u.t) + ;(u,x)] is unique and the following estimates hold:

————— 172 1/2 t
(4.5) l/kt(u) IVp(u,E)llzln < xo “lcia) Iul.'n + |g°|2'n)
+ 1/2 t
(4.6) Iv(u,e)lzln < zxo{c|n| lul.'n + |g°|2'n} ’

where C, t and g, are introduced in [A3]. Pinally if u u e L.(n) then

2

-0~

[ vouus

g




.

- * >
(4.7) IVp(u1,t) - Vp(uz,e)lz'n < G'[Iu' - “2‘-,0 + I|g(u‘,x) - g(uz,x)ll.'n]

t t
+ ful + luzl_ )

*
LL ISP 1'e.0 .8

and
* * -
(4.8) lv(n‘,t) - '(“2'c"2,ﬂ < Glep(u‘,c) - vP(“z""z,n

where G, depend on {2}, k,, C and €. In particular as € *+ 0 the G, become

unbounded.

4-(a) Existence, unigueness and boundedness for u

The available existence and unique th ¥ t be directly applied here since

:r is not regular encugh. Let us prove uniqueness first. Suppose u, and u, are

1,2

solutions of (4.1). Then w=1u, -~ u, €W (2) satisfies

(4.9) [ (B - 2ew)Wnax =0  wnew ' Z@mntT@ .
Q
o1,2
Taking n = v ew () in (4.9), where
n, vn(x) >n
vn(x) = { win), wix) € {~n,n]
“n, w(x) < -n

and noting that div ; = 0, results in the equation

[ 19w lzdx-o n=1,2.,.. 4
g " ,

Thus the convergence of w, to w implies the equation

J/ IVvlzdx =0
Q

and the uniqueness of u.

Existence is proved by considering a sequence of problems

01,2 e . -
(4.10) u -¢ew’ ') : é (Vu_ - Av u )Vnax é (£,n flnxi)dx vnew

-11=




wvhere ¢ is an extension of ¢ into §I such that “ﬁ

(L] + 101 < ¢
-,Q w1,2(n) 0

for a given fixed constant ¢,, and (;n} is a sequence in 00(0) which converges to v
in J_(Q) such that
¢ v, <Ivl, =V
Yni2, % V2,07

Since div ;n = 0, Poincare's inequality implies that

((w,n)) 2 [ (Vv = AV_w)Vnax
Q n

is an inner product on G"z(ﬁ) which generates an equivalent topology in ;"2(9).

Similarly the right hand side of (4.10) can be written as f(n) where f(°) is a

continuous linear functional on ;"2(9) and, since ¢ € u"z(n). a standard application
of the Riesz representation theorem yields the existence and uniqueness of a solution to
(4.10).

We now obtain some estimates for wu, which are independent of n. Taking

n = un - 49 in (4.10) we obtain
2 1.,* 2
(4.11) £ {1V = 17 = 3 A V(u - ) }ax :

+ 3
é (v Vtu - 00 - V(u_ - O)lax + é {tgto, -0 + £, x, (u - ®)lax .

Obgerving that i

[V Vu -02ax=0,
) n n

P o ey e

a repeated application of the inequality ab < caz + bz/a. yields the existence of a

constant Y depending only on ) such that

P Sy f sy T o oreoey

-{2=-

H
]
l




+
[
¢
£
a

2
2 * 2 2 2
) (4.12) Wea, = 0005 o < v(101, 15 10 o+ 1900 121 1050
-1 2 2
+ YO 'folz,n + olun - Olz'n .
Poincaré's inequality and (4.12) imply the egtimate
2 2 2
(4.13) I“n.z,ﬂ + 'v“nlz,ﬂ < 10(1 +VvY) ,

where Y, depends on the data {O,fo,f1,f2} and 1.
An L~ bound for u, will now be derived. Let £ > 148 2q° Then the function
’
ns= (un -~ l)’ e W"z(ﬂ) and can be used as a test function in (4.10) to give
+.2 * + + ) +
(4.14) ‘]‘ 19€a = 0717 + Av eVu (u - t)ax = [ f(u =-2) - ¢ (u, - ) ax .

2 i 3x1

Setting
A, 2 {x e Qlulx) > 2}
and noting that

* + 1 »> " - +2
‘{ v Pu (u - £) ax -5‘{ v eVl - £) ‘ax

we obtain from (4.14) the inequality

2
+,2 +.2 2
[ 1 - 0" fax < 1w - "2 + 1] flax.

n

Y4 i=0 Al
Hlder's inequality and [A,] imply that
- + 2 _ + 2 - 1=2/24x
(4,.15) lV(un 1) I2’n < l(un L) Iz"2 + Y‘IAll '

where ?1 depends only upon the data. let M be a number larger than 2l0|. 39 and
1[4

consider the sequence of increasing levels
Lo=M+N(1 -2 ma=0,1,2....
$ A bound on ess sup u(x) will be obtained by taking & = l- in (4.15), H3lder's

xeg
inequality and Sobolev embedding (see for example inequality (2.12) on p. 45 of [10]) imply

~13-
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that for 2 < p <=

[ tu - r._”)’zdx <{f o - z_)’pa:}”"lnl j\-2/p
Q 1] mt+t
- 1/p +.2 1=2/p
Sclalt "Pivu_ ~ 2 )15 A l
n [ ] 2,0 l-+1
wvhere ¢ depends only on p. We deduce from (4.15) that
+2 - 1-2/p +2.2 1-2/24
(4.16) [ (u_ -2t ) Cax <y, 1A, | {0 -2 )12 4 A, | ).
Q n w1 2 l-+1 n -+1. 2,2 l-¢1
Next observe that since £ .. = £_+ /2™
b sinc =+t n ’
+.2 +.2
Hu, = L) hp,0 <My, =205 9
and
+. 2 +2 M 2
f(u_ -2 > (u =2 ) “ax > (—==)° Ia .
1 n a 2,0 Az n n 2-+1 l-¢1
. m+
Choose
p=4(2 +x)/x e (2,»)
and set

g = x/2(2 + ) e (0,1) .

Substituting into (4.16), we obtain, for a constant 73 depending only upon the data

mt1 2+

m+l 20 20
2 - 2 2 2 1
(4.17) £ w -t < [E-) (5 ] ({z (o =t ) ax)'* .

Setting

(4.17) implies

(4.18) <YOY., b

-14-
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wvhere 7 4 depends only upon the data and in particular is independent of m. Inequality

(4.18) implies, with the aid of lemma 4.7 of (10), p. 66, that +0 as m+ = |f

2
- .=1/0 _-1/0
¥y ¢ (v‘) b

Consequently if M {is chosen to satisfy

2
2 =1/0.1/0 2
n o 1‘ b In“l,‘mz

we have that y_ = 0 1{.e. f (un - m)’zdx = 0 and

]

u-n.up ul(x) < g “"("'-,an""n'z,n} Y

where ;5 depends only upon the data and is independent of ;. A bound for ess inf u(x)
Q
is obtained in a similar fashion and we deduce that

(4.19) fu d <

wlea € Y6 max{1¢1 } .

-,20° 92,0

Passing to the limit in (4.13) and (4.19) as n tends to infinity we obtain the existence

of a solution to (4.1) satisfying (4.2) and (4.3).

4-{b) HS8lder continuity of u

The results of [10) imply that the HSlder exponent and constant of u may be
estimated in terms of the Lq(ﬂ), q > 2, norm of : and the data. However the proof of
the theorem requires that these estimates are independent of € and it is known only that

] €V where V does not depend on €, (see Section 4-(c)). In the following, the

v 2.9
arguments of [10, p. 81, 90] are adapted to demonstrate that the extra information of
aiv ; = 0 and the space dimension being two is sufficient to conclude that u is H3lder
continuous in I with estimates depending only on 1312'9 and the data.

Let x, be an arbitrary point of 2 and let B(p) denote the ball

B(p) = {x 1 |x - xol <pl. Por xgef, p will alvays be chosen 8o small that

B(20) Q. For o €@ (0,1), C(°) will always denote a smooth cutoff function such that




(1) supp T C B(¥®)

(14) L =1 on B(p -0p) and ((x) e [0,1)

(111)  19g] < (oo ",

The H8lder continuity of u is shown by the judicious use of an integral inequality
which follows directly from the integral identity (4.1). Por arbitrary k € R, the
results of 4-(a) imply that the functions
(4.20) n = ttu - %2 e w' )

are admissable test functions in (4.1) and setting
+

x'p 2 {x e B(p)|ulx) > k} ,
gms{xeawumx)<ﬂ.

gives

2.2 2 2
(4.21) [y 1Val%fax = [, (£ - x0g" - g0 ¢ - 28 2000 - K)}ax
1 1
M.e A0
=xf, W - xcheex - [, (u - 0V ia .

lktp Akao

The inequality ab < 6-112 + sz and the facts that 0 < § < 1 and div v =0 imply that

the right hand side of (4.21) is bounded by
1 2, (2 2 2 22
3 It (gg+ (F+1) 1 flax+ 28 [t 1ul ‘g ax
lknp = Akrp

1 2 2 2
+5!: (u =)0 + (2 +x)lvtl Jax + A It 19119c(u - ) 3ax .

Akvp Akpp

Choosing § = 1/2 and observing that

2
|
2 2 t 24x
{: Cax < 1gn,, g 1 ,
P 2

from (4.21) we deduce the inequality

-t~

J VR oy

G,y




(ISR

£,2 2.2 -2 2 ‘

- - ‘ -
(4.22) Wu - X) lz‘,‘p_”) '{t 1Vu|“g%ax < v (0p) “tu u: R <
L7 'Aklp |

8
-
3 24 -1 > 2
+ vzlu,ml + v, (0p) [t lvl(u - x)“ax .
Aktp

where 72 is a constant depending only upon the data and is independent of ;, and (op)
is assumed to be less than or equal to one.

Proposition 3
There exists a positive number s depending upon the data and the [Lz(mlz norm of

; such that either

ess osc u ¢ 2 %R%/2*
B(R/2)
or
ess osc u< (1 ~2 ") 0g cec u .
B(R/2) B(2R)

This proposition is proved via a series of lemmas which make use of the inequality

(4.22), Setting

H=g@gs8 supu, V =e88 inf u, w = ¢ss o8c u =
B(2R) B(2R) B(2R)

"
L
[}
<

we have, obviously, either

(4.23) lx e s utx) > u - $} < 3 1smy
or
(4.26) Hx e str)tutx) < u - 11 < 3 (8wl .

It is assumed that (4.23) holds with the arguments being similar if (4.24) holds.

Setting, s e W,

(4.23) implies that

-17-




1 2
(4.25) IA'I < 3 wR Vs em.

The following lesma due to De Giorgi [5] will be used.
Lemma 3

There exists a universal constant B8 such that for every pair of numbers £, k such

that 2t > k,
(2 - k) 1{x e B(R) [utx) > £}] /2
2
< BR____ I IVulax
1{x e B(R)|u(x) < k}| B(R)N >k \ [w> )
letma 4

For every Oo e (0,1) there exists an integer 8, = -o(;,eo) > 0 such that either

-8
w <2 ORE/2

ia |<o:nz.
s, (]

Proof.

' and k=u-w® s>1 yields,

Applying lemma 3 with 2 =y - wz-'-
2

BR
< _.....___! |Vulax .
IB(RNA | o \A

s s+l

[ 1/2
(2341) 'Arﬂl

By virtue of (4.25) |B(R)\A.| > IR2/2, hence an application of HSlder's inequality to the
right hand side of (4.20) results in

28,2 2
(=12 a0 < (B2 ana 1 S 1vu]®ax .
2-4-1 s+1 " s a1l AAA

s st

Now the inequality
+.2
2,B(R)

(4.28) j9utZax < | 1vu)?ax = 1V(u - 4+ 2;) '
2

As\ Alﬂ Al

holds and this last term can be estimated by making use of (4.22) written for




e A et A A R ko et L. o st e

k=u-w2? p=2R and 0 = 1/2 which leads to

W 42 -2 @ (¢ 2
Wiw = u + 2-) Voamy S TR Mu-we 2-) ‘aizr)
+ -
syt i, Y,R vy i(o - u+ 9_:)4»2“
U=, 2R B(2R) 2
!
2
< 4w(9:)2 . 72(432-)"2’2" . yzk.‘(g;)z f |viax
2 2 B(2R)
since (u -y + uz-')’ < w2™® on B(2R). By H3lder's 1inequality
R Ivlax < n"l$|2 n(:Anz)'lz .
B(2R) !
8o that
2x
2 24¢

w 4+ w_\2
19(u -y + -2:) e S 301 V)(;;-) + VR

which leads to, upon substitution into (4.27) and (4.28), the inequality

2K
w2 2842 W 12 24K
(4.29) (2.‘1) ] SR I () v0r + V)(z‘) R A }lh.\l.+’|
X /24« -'0
If R < w2 and sy > 8 then (4.29) implies that
(4.30) ‘l.‘"' < 75(1 + V)ll'\h.‘nl, s = 1,2,...,!0 -1.
Adding these inequalities, recalling that Il.l > IA. | and |l.| < lelz, we obtain
0
2
(.o - A | € vy (1 +V)eR /2,
s, S

Hence given 00 @ (0,1) to prove the lesma let

-2 m prvy
(4.31) 5~ 2= [v, 30, ]

where [r] denotes the largest integer contained less or equal to r.

i i




Lesma S
Let H = ess sup (n -y ¢ 2:—)’ for any s, € W. There exists a number Oo e (0,1)
B(R) 2 0
such that if
It | < 8 wp?
w 0
- ‘-_,a
%
2
then either
'RE-T bt
or
|A‘ ® ' -0 .
-4+ HNK2
s
2
Proof.

Consder the sequence of balls B(R,) where

nw 0,1,2,...

and the sequence of increasing levels

xn-u-—‘:—+5- ne0,1,2,000 o
0

2

h%'ﬂ

n+2

The inequality (4.22) can now be applied with k = Kye P = Rn and GI‘ = R/2 « This

leads to the inequality

n+2 2

+.2 2 2
Wea - k05 pm oy (5, (u -k )ax
n+l Ak R
n’ n
2
{og=— n+2
+ 24% 2 + 2
(R ALV sy (5 ), el ex) e
nn A
kn'nn
Since sup (u - kn) < % + !; ¢ H and
B(R) 2
«20=

v e S




-

+ 1/2
I, M k) L m2 alAx " I ’
R n
n’'n
from (4.32) we obtain the inequality
2n+d H +
(4.33) Wa - & y 'z BR_, ) < 1,2 7 I R |
R n N
13 2
24 n+2 H + 1/2
+Y,la R | + 7,2 = vl R !
n nn
2 1-=2- 5
2n+4 + + 24K i + 1/2
AR e N LN I M ni-ull LV By O
nn nn n n

Applying lemma 3 with £ = knﬂ and k = kn over the ball B(RM,') gives

2
1
TR I ALY x /2 ¢ \B: I, . [Vulax .
n+1 n+1 IB(R ) | \
. n+1 hkn,Rmi lkn'nl’““' &n’1lkn+1

Since

+

'Lk 1 < |& 1 < eomz vhere 6, e (0,1)

n’ n«H

we have

+ 2 2 201 2
|a(nn’1)\nkn'nn*'| >R, - 8TR > wRY(g - 8,) > "r%/8

provided 00 in less or equal to 1/8.

Consequently (4.34) implies that

2
-;E;—; IA;: R l < (?)2": 1], 1vul2ax
(2 ) n+1' n+ n’ n+1 Ak R
n’ net

N -

and since

¥
'




f 9ul?ax = | 19w - x )*)%ax
B(R ) n
at+1

we have from (4.33) that

(4.35) IA;

p I
4 + 2 + +
LR - L T TN b P N B Iy o 12
n+1’ ne n'’n n’n n’

where Ye is independent of ; and n. Refining

+ 2
§p = 1Ay R /R
n n

(4.35) becomes

RZ(I-Z/Z*K)

8 . < 762‘“(1 + V){C: +

p 1 2 g2

n n
H

Provided 90 € 1/% we have that 0 < Gn < 1 and if

B> V2%
1 then
4an 141
F (4.36) 6n+1 < 772 (1 + V)Gn
where
‘ 2 3
T = mln{z, 1 - 7 s x} . k

On the basis of lemma 4.7 of [10, p. 66] it follows that provided

2
60 < lY7(1 + v))-ilr‘zd)-llt

the sequence Sn converges to zero. Hence if we take !

2
(4.37) 8y = minlg, L (v 01+ vV T2V

then provided

-22-




either N
'REE shae
2
or
+
1a © 1 | =0 .
W - ——=+ >H,R2
] 2
20

Proot of the Proposition 3

Let 60 be chosen as in (4.37). By lemma 4 there exists an integer so(eo,;) such

that either

-8
(4.38) w ¢ 2 ORE/2¥
or
2
(4.39) IA | < 0 =R
lo -]

holds. To prove the proposition we need only consider the second possibility and show that

it implies
-(lof1)
{4.40) ess osc u < {1 -2 ) ess osc u
B(R/2) B(2R)
From lemma S, (4.39) implies that either
(4.41) R < % b
or
(4.42) W, |=0.
M =-—4¢HR2
s 2
2 0

Suppose (4.41) holds. By the definition of H,

es mupu Gy - Lo R - e SEg ey - S0
B(R) 2 0 2 0 2 0 2 0

since (4.38) does not hold. Hence

aess osc u € ess osc u € w -~ -;2:?
B(R/2) B(R) 2 0

and we have that (4.40) holds. Otherwise if (4.42) holds then




w 1
< - —— —_
ess sSup u u '#zl-l

B(R/2) 2 0
20 B(R) 20 20

and again (4.40) holds. Consequently the number s claimed by the proposition is the

8y given by (4.31) and (4.37).

Lemma 6
}
‘ u is H3lder continuous in £ with exponent
x ~(3+1)
(4.43) a = min{z7—1 tn 1/0] where o =1 -2 .
Proof.

For every X, € 1 and for all R < 1 such that B(2R) C {1, set w(R) = ess osC u.

- B(R)
We have shown that for all such R, either w(R/4) < 2'R‘/2+K or w(R/4) < ow(R). Then

the lemma is an immediate consequence of Lemma 4.8 of (10, p. 66] and in particular

(4.44) osc u < G(%)a 0 <p <R
B(p)
where
(4.45) G = max(21u, o5 2°R2Y) |
’
Remark

If the boundary datum ¢ in H3lder continuous with jué» exponas® 8 then the

o
demonstrated HS5lder continuity of u carries over to » with a new H8lder exponent

depending on V and B. The proof of this follows from the arguments of (10, p. 90-95)

‘ with the modifications indicated above.




4-(c). A priori estimates on the pressure

Let elements of the quotient space H"z(n)/l be denoted by (n). The guotient norm

1M1l = sinf iInl 1.2
ne(n] w '5(Q)

is equivalent to llvnllz q for ne {nl. Thus for any u € L.(Q),
.

[ x (wvETnax (€1, (n) e w' Zi/m
a

defines an inner product for which w"z(ﬂ)/l is a Hilbert space,and

[ x (03tu,%ax  vin) e W' Z(1/m
a

1,

defines a continuous linear functional on W 2((2)/!. Hence the lLax-Milgram theorem

implies that there exists a unigue [p] € w'"2(2)/R such that
(4.46) pefpl, [k (¥ + 3ux)nax =0 vnelz ew  @im.
Q

The pressure p = p(u,e) is determined up to an arbitrary constant by (4.46) whereas the
gradient of p, and hence V(u,€) = =k, (u} {Vp(u,z) + 3(u,x)), 1s uniquely determined. It
remains only to obtain the inequalities (4.5)-(4.8). Taking n =p {in (4.4) yields (4.5)
and hence the definition of ;(u,e) gives (4.6). 1Inequality (4.7) is proved by writing
(4.4) for uy and u,, differencing and choosing n = p(u,,c) - p(uz.t). Finally (4.8)

is a consequence of (4.7) and the definition of ;(u,t).




S. PROOF OF PROPOSITIONS 1 AND 2.

Fix € >0 and u € L-(Q). let p(u,c) e H"z(ﬂ) solve

(5.1) - atv k_(w [Vp(u,e) + Jlu,x)] =0  in D(a)
X (w) [Vplu,e) + glu,x)IN = 0 .
and ;(u,e) be uniquely defined by
(5.2) v(u,€) = -k_(u){p(u,€) + Jlu,x)} .
Set F(u) e "1,2(0) to be the unique solution of
(5.3) -AP(u) + X;(u,E)VP(u) -f, ¢+ 5%: fi in D'(Q)
F(u) = ¢ on N .

Obviously (5.1)-(5.3) are meant in the weak sense made precise earlier.
Lemma 7

(1) P =L (R) + L (Q) is well defined.

(if) There exists a constant M depending only upon the data in [Aol-[A3] such
that if B(M) is the ball of radius M in L (), then

P : B(M) +» B(M) .

(1iii1) P 4is completely continuous.

Proof. Lewmmas 1 and 2 imply that

1/2

t ~
< =
Il?(u)l_'n Y, (14 ZkO{CIQI lul.'n + Igolz'n}) Y, * Y '“'-,n .

Let M be the solution of

Yo+ Tm =m>o0.
Such an M exists since t €(0,1), and it can be determined a priori in terms of the data
only. Therefore if u € B(M) we have F(u) € B(M). This proves (ii). Statement (i) is a
consequence of the unigueness of ;(u,c) and PF(u) defined by (5.2) and (5.3).

By lemma ' F(u) is HSlder continuous on compact subsets of {1 with constants

depending upon lclz’n €V. If ue B(M) then by (4.6)

l?nz'9 ¥ eI
where ;1 and ;2 depend only upon the data. Therefore the H5lder constants of F(u)
can be a priori determined depending only on the data. Consequently P is compact. In

order to show continuity of P, let (“j) be a sequence in B(M) such that

26~




uy * uy @ B(W) uniforwly in €. Writing (5.3) in the weak form for uy and u, we

obtain, by differencing, the equation

| (Virtu

>
A j) - r(uo)) - Av(u

E)(P(u,) - P(uo))}Vndx

b) 3

- - {%u

goe) - Sy, )Vra nax  wnew' P .
2

We take n = P(uj) - "“o’ and observe that the second integral on the left hand side

vanishes for this choice of n, since div ; =0 4in D'(R). Thus we obtain

[ 19(r(u

2 * +*
; j) - l(uoll dx < G(l.lvr(uo)lz'n)lv(u’,tl - v(uo.eilz'

f

In view of (4.7) and (4.8), the following inequality holds

2

V(r{u 2.9

) = Plug)h) o < GILITR(u IV, o data,c) {1y, = ugl, o+ 1, -& n

3 0 »,0

where El - ;(“1")' Letting j * ® we see that, since ;(°,x) is continuous by (Aal,

Flu) > K t tn w'Z@)
uy ug) strongly in

* However the uniform boundedness and HSlder continuity of (P(uj)) implies for every

subsequence {F(u’!,)} the existence of a subsequence u’, for which
k

Pu,) + 7 in L@ .
k
Hence P = r(uo) and for the entire sequence
Pluy) » Flug) in LT(@) .
F is continuous and the lemma is proved.
By the leray-Schauder fixed point theorem F has a fixed point in Lr(a). Therefore

we can conclude that Ve > 0 problem (2.2)-(2.5) has a solution and Propositions 1 and 2

then follow.




Remark
In the case t = 1, there exists an M > 0 golving (5.4) when . 4

;2 - Y'Zl:oclnlv2 < 1. Thus we have existence for t = 1 when the data is sufficiently

small.

ey
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